
J .  Fluid Mech. (1973), vol. 57, part 3, pp. 417-431 

Printed in &eat Britain 

417 

A family of steady vortex rings 
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Axisymmetric vortex rings which propagate steadily through an unbounded ideal 
fluid at  rest at infinity are considered. The vorticity in the ring is proportional to 
the distance from the axis of symmetry. Recent theoretical work suggests the 
existence of a one-parameter family, 4 2  2 a > 0 (the parameter a is taken as 
the non-dimensional mean core radius), of these vortex rings extending from 
Hill’s spherical vortex, which has the parameter value a = J2, to vortex rings 
of small cross-section, where a --f 0. This paper gives a numerical description of 
vortex rings in this family. As well as the core boundary, propagation velocity 
and flux, various other properties of the vortex ring are given, including the 
circulation, fluid impulse and kinetic energy. This numerical description is then 
compared with asymptotic descriptions which can be found near both ends of the 
family, that is, when a --f J2 and a + 0. 

1. Introduction 
The recent theoretical work of Fraenkel (1970) and Norbury (1972) renders 

the existence of a (conjectured) one-parameter family of steady vortex rings 
highly plausible. These vortex rings are axisymmetric and move without change 
of shape through an unbounded inviscid fluid of uniform density a t  rest at  
infinity. The vorticity in each ring is proportional to the distance from the axis 
of symmetry. The following sections give a numerical description of typical 
vortex rings in this family, which is characterized by the parameter a with 
4 2  2 a > 0. Here a is defined as the non-dimensional mean core radius. The 
family ranges from Hill’s spherical vortex, which has the parameter value a = 42, 
to vortex rings of small cross-section, where the parameter a -+ 0. This explicit 
numerical description will complement any non-constructive, global existence 
work for the family of vortex rings. 

The constructive existence theories of Norbury (1972) and Fraenkel (1970) 
lead to approximate descriptions of those vortex rings for which a + J2 and 
a -+ 0. Asymptotic results for a vortex ring close to Hill’s vortex are established 
in Norbury (1973), while the corresponding results for a vortex ring with small 
cross-section are given in Fraenkel(l972). The good agreement of the numerical 
and asymptotic results a t  appropriate values of a suggests (a )  that the asymptotic 
results for a -+ J2 and a --f 0 are useful approximations over large intervals 
J2 > a 2 a1 and a$ 2 a > 0 respectively, and ( b )  that the numerical scheme does 
lead to correct approximations of the actual curves. 

The essentials of the numerical scheme are as follows. The problem is first 
27 F L M  57 
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FIGURE 1. The meridional cross-section A of the vortex ring, specified by the parameter 
u ( =  0.7) ,  with the ring radius L = &(OB+OC) .  The core A ,  with boundary aA, has area 
?rL2aZ. For this normalization the vorticity constant is !2 = U/LZa2, where U is a suitable 
reference velocity. 

cast as a nonlinear integral equation for the boundary of the vortex ring. The 
boundary is represented by an appropriate Fourier series whose coefficients are 
found by an iterative process based on linearization of the integral equation 
about an initial guess. 

This scheme also finds the propagation velocity and flux of the vortex ring. 
Then the fluid impulse, kinetic energy, circulation, volume of entrained fluid, 
etc., are found, and these results are given in § 3, where they are compared with 
the corresponding asymptotic results. 

2. Formulation of the problem 
2.1. The integral equation for the core boundary 

As in Fraenkel (1970) and Norbury (1972) we start from the equations of con- 
tinuity and vorticity for the steady axisymmetric flow, with no swirl, of an 
inviscid fluid of uniform density throughout space. The continuity equation, 
divv = 0, implies the existence of a vector potential (0, $/r ,  0) such that 

where $(r ,z)  is the Stokes stream function, v the fluid velocity, and all com- 
ponents are with respect t o  cylindrical co-ordinates ( r ,  A ,  2). The vorticity equa- 
tion, v .  grad ( o / r )  = 0, (2.2) 
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is satisfied trivially by the particular distribution w = Qr, Q = constant, of 
vorticity that we take in the core of each vortex ring in the family. We denote 
the meridional cross-section of the core by A (figure 1) and take axes fixed in the 
ring. 

Then the problem can be stated: given the free-stream velocity W ,  the vorticity 
constant Q, and a positive constant k ,  find the stream function $ and the 
boundary aA of the core cross-section A such that 

( 2 . 3 ~ )  

(where we have taken the curl of (2.1)) and such that 

9 and grad $ are continuous across aA, (2.3b) 

$ =  k on aA, ( 2 . 3 ~ )  

$ + + W r 2 + 0  as r 2 + z 2 + m .  (2.3d) 

Equations (2.3b, c) correspond to no flow of fluid through the boundary aA and 
to the continuity of tangential velocity across 8A. 

We observe that, if aA is assumed known, then $ is given by 

Here (2.4) is based upon the fundamental solution Ix- 2l-l of the Poisson equa- 
tion satisfied by the vector potential. The kernel G is the stream function at  
x = ( r ,  z )  of a singular vortex circle a t  ft = (+,a) having vorticity of delta-function 
type with circulation 2nP. 

Once aA is known, (2.4) represents the solution of the problem (2.3). So we 
combine ( 2 . 3 ~ )  and (2.4) to obtain the following nonlinear integral equation for 
the core boundary 8A: 

k = -iWr2+- G(r,P,z-$)dPdP for (r ,z)EaA.  :Ss, 
The problem is thus reduced to finding curves aA that satisfy (2.6) for different 
W ,  Q and k .  

2.2. An appropriate normalization of the integral equation 

First we seek a convenient representation for the curve aA. Thus we introduce 
the following non-dimensionalization. We refer all lengths to the ring radius L, 
defined as the distanoe from the axis r = 0 to the midpoint D of BC, the chord 
= 0 of A (figure I). The positive parameter a is introduced by 

area of A = n-L2a2, (2.7) 
27-2 
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FIGURE 2. The core cross-section A with the boundary aA defined by 8 = f ( t ,  a) in the (8,  t )  
co-ordinates. The dividing streamline @ = 0 is more appropriately defined in the usual 
(p,  8) spherical polar co-ordinates. 

and is called the mean core radius. We choose a reference velocity U such that 

Q = U/L2a2 ( 2 . 8 )  

r = LT, x = Lz, W = U W ,  k = U U Z ,  etc. (2.9) 

_ _  
is satisfied, and introduce non-dimensional variables F, X, W, Ic ,  etc., by 

We now consider Q, L and a as given, rather than Q, W and k, and thus solve 
(2.6) for k, W and 8.4. We do this to simplify the numerical and graphical work. 
Thus we consider the following form of (2 .6 ) )  on dropping the bars after intro- 
ducing the above non-dimensionalization: 

G(r,  9, z - 2) dP d2 for ( r ,  z )  E 8A (a). (2.10) 
I 

k(a) = -%W(a)r2+-  

The area of A is na2 and the midpoint of the chord z = 0 of A is (1 ,O) .  We find, 
for each a E (O,J2] with this formulation of the problem, only one solution set 

We know a particularly simple solution of (2.10) for the parameter value 
{k, W,aA) of (2.10). 

a = 4 2 ,  that is, Hill's spherical vortex, when the constants have the values 

k ( J 2 )  = 0,  W ( J 2 )  = &, aA(J2) = ( ( r ,z) l r2+x2 = 4 or r = 0, 1x1 2). 
(2.11) 

Solutions of (2.10) have been found (Norbury 1972) for J2 2 a 2 a1 (where a1 
is close to 4 2 ) )  with a different scaling. Solutions of (2.10) have also been found 
(Fraenkel 1970) for a2 3 a > 0 (where a2 is small). Here we look for numerical 
solutions over the whole range 4 2  2 a > 0. We introduce a new independent 
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variable t so as to obtain a representation of the curves aA which is uniform over 
the whole range of a. Thus (s, t )  co-ordinates are defined by (figure 2) 

r = 1+scost and z = ssint, 

and we look for symmetric curves aA(a) of the form 

00 

s = f(t, a) = a,(a) cosnt. 
n=O 

(2.12) 

(We note that G! is a function of r ,  P and Iz-51, so that aA will be symmetric.) 
In these co-ordinates (2.10) becomes, with f E f(t,a) andf = f(t", a).  

k ( a )  = 

x ffQ(l+fcost,l+$cosi!,fsint-8sinf)kd8 (0 6 t < T ) ,  (2.13) 
d o  

which we solve for k, W, a2, a,, ... for different a~ (0 ,JZ) .  We note that a, and 
a, are determined by the normalization. The condition that D is the midpoint of 
the chord BC implies that s(0, a )  = s(n, a ) ;  that is, 

a,+a,+a,+ ... = 0. (2.14) 

Hence a, is determined by the a,, n >, 3. The condition that the area of A is na2 
implies that 

= .{at + +(a: + a; +a: + . . .)>. (2.15) 

Hence a, is determined from the a,, n 2 1. 

2.3. The numerical scheme 

For a E (0,421 we use the notation 

PJk, W,a2,a3, ...) ( t )  = PJX) (t) = 0 (0  < t < T), (2.16) 

where X 3 (X,, X,, X,, X,, . . .) = (k, W ,  a2, a3, . . . ) for the problem posed by equa- 
tions (2.13)-(2.15). That is, givenasuitableXandanaG(O,J2], wefirst calculate 
al(X) and a,(X,a) using (2.14) and (2.15), we then calculate f(t ,a)  using (2.12), 
and we finally define, using (2.13), 

1 2n 
PJX) (t) = - x, - *X,( 1 + f cos t ) 2  + =Io at" 

We note that XI, X, 2 0, and &hat our choice of X,, X,, ... is restricted by our 
desire to avoid the complications of having the curve s = f ( t ,a )  intersect the 
axis r = 0. We bound X,, X,, . . . by the corresponding Fourier coeficients of 
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Hill's spherical vortex (the first 40 are given in table 1 below). Our aim in the 
following is merely to render plausible the actual finite-dimensional approxima- 
tion (2.19") that we use to obtain numerical solutions to (2.13)-(2.15). 

For a given cc~(O,J2)  let X1 be an initial approximation to the root of (2.16), 
and let S" be the small difference X - X1. Then, if Pa is differentiable with respect 
to X at XI, we can write 

* aPa 
,,,ax, Pa(X) = Pa(X1)+ Z--(Xl)Sf+R (0 6 t < n), (2.17) 

where the remainder R satisfies IRJ/IS*l-+ 0 as IS*(  -+ 0. Here IS*l  denotes the 
magnitude (STz + S z 2  + . . .}* of the vector S". We solve the linear equat,ion that 
follows from combining (2.16) and (2.17)) and neglecting R; that is, 

aPa 2 = -Pa(X1) (0 < t < n-), 
j=l axj (2.18) 

for 6. We observe that, if this linear equation has a unique solution S, if the 
second derivatives aPa/aX, ax, are bounded, and if the S, are sufficiently small, 
then X2 = X1 + S will be a better approximation to the solution of (2.16). In 
fact, under these conditions we know that Xn converges to the root of (2.16) 
as n --f 03, where the successive approximations Xn (n 2 2) are calculated from 
the equations 

ap, 
__ (Xn-1) Sj = - Pa(X,-l) (0 6 t d n), 

i=l ax, ( 2 . 1 9 ~ )  

X" = Xn-1+ s. (2.19b) 

When Pa is differentiable this iterative scheme is just Newton's method applied 
to (2.16). We are unable to prove that this scheme converges, but have verified 
the convergence conditions numerically. In  facb, we use the continuity of 
aPa/aXj in X to replace ( 2 . 1 9 ~ )  by 

m ap, c -(XI) 8, = - Pa(X"-l) (0 6 t d n). 
j = 1  ax, ( 2 . 1 9 ~ )  

We now replace (2.19c,b) by a finite-dimensional approximation. We use the 
notation = (XIJ . . .) XN). Then we consider 

Here we have forced the functional relation ( 2 . 1 9 ~ )  t o  hold only for N different 
points ti E [0, n], so that we obtain a (hopefully well-posed) set of N simultaneous 
linear equations for the N unknowns S,, ..., 8,. The success of this finite- 
dimensional approximation depends upon the appropriateness of the expansion 
(2.12) for the problem. We choose N so that the error in taking a, = 0, n 3 N ,  
is as small as the computational errors which occur in evaluating Pa, aPa/aXj, etc. 

Finally we need to approximate numerically the scheme (2.19") t o  sufficient 
accuracy to ensure numerical convergence. Some of the computational details 
are given in the next section. 



A family of steady vortex rings 423 

c1 ... 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

k 0.6804 0.4324 0.2967 0.2085 0.1469 0.1026 0.0704 0.0470 
W 1.0195 0.8488 0.7402 0.6586 0.5922 0.5357 0-4863 0.4428 
a, 0.1000 0.1999 0.2997 0.3991 0.4978 0.5958 0-6928 0.7888 
a1 - 0.0000 - 0.0005 - 0.0020 - 0.0050 - 0.0099 - 0.0167 - 0.0254 - 0.0354 
a2 - 0.0010 - 0.0067 - 0.0188 - 0.0379 - 0'0639 -0.0963 -0.1341 - 0.1761 
a3 0.0000 0.0005 0.0022 0.0059 0.0122 0.0217 0.0344 0.0504 
a4 0.0000 0.0001 0.0007 0.0018 0.0040 0.0074 0.0120 0.0178 
as O*OOOO - 0.0000 -0.0002 - 0.0009 - 0.0026 - 0.0057 -0.0109 - 0,0184 
% - - 0.0000 0.0001 0*0003 0.0008 0.0018 0.0035 

- 0.0000 0.0001 0*0003 0.0008 0.0018 0-0035 a7 - 
- - - 0.0000 - 0*0001 - 0.0005 - 0.0012 - 0.0027 a8 - 
- - 0.0000 0.0000 O*OOOO 0.0001 0-0003 

a9 - 
- - 0.0000 0.0000 0.0001 0.0003 0.0008 a10 - 
- - 0.0000 - 0.0000 - O*OOOO - 0.0002 - 0*0005 a11 - 
__ - o*oooo - - o*oooo 0~0000 a12 - 

-0~0000 - 0~0001 0*0002 
- - 0~0001 

%5 - - 0~0000 
%6 - 0~0000 

- 0~0000 

__ - - a13 - 

a14 - - - - - - 
- - - - - 

- - - - - __ 
__ - - __ - - 

42  
c1 ... 0.9 1.0 1.1 1.2 1.3 1.35 4 2  (a1s-a39) 

k 0.0302 0.0182 0.0099 0.0044 0.0013 0*0004 0.0000 0.0085 
W 0.4043 0.3703 0.3402 0.3136 0.2901 0.2793 0.2667 0.0060 
a, 0.8840 0.9783 1.0722 1.1659 1.2596 1.3066 1.3700 -0.0127 
a, -0.0468 -0.0591 -0.0724 -0.0871 -0-1036 -0-1129 -0.1283 0.0063 
a2 - 0.2208 - 0.2665 - 0.3116 - 0.3542 - 0.3921 - 0.4083 - 0.4276 0.0054 

a4 0.0246 0,0318 0.0384 0.0429 0.0425 0.0391 0.0285 0.0048 
a5 - 0.0284 - 0.0410 - 0.0558 - 0.0723 - 0-0895 - 0.0981 - 0.1099 0.0049 
a, 0.0061 0.0099 0.0154 0.0236 0-0361 0.0454 0.0643 -0.0089 

a, - 0.0053 - 0.0092 - 0.0149 - 0.0228 - 0.0332 - 0.0399 - 0.0508 0.0045 

a3 0.0692 0.0907 0.1145 0.1409 0.1702 0.1865 0.2129 -0.0105 

a, 0.0061 0.0091 0.0140 0.0184 0.0208 0.0200 0.0140 0.0038 

a, 0.0006 0.0013 0,0025 0.0051 0.0112 0.0172 0.0313 -0.0077 
a,, 0.0016 0.0032 0.0056 0.0087 0.0116 0.0123 0.0098 0.0031 
all - 0.0011 - 0.0024 - 0.0047 - 0.0086 - 0.0154 - 0.0209 - 0.0307 0.0042 
a12 0.0000 0.0000 0.0002 0.0010 0-0043 0.0083 0.0184 -0.0068 
a13 0.0005 0.0011 0.0023 0.0041 0.0067 0.0082 0.0079 0.0025 

aI6 0.0000 0.0000 0.0001 0.0007 0.0029 0.0058 0.0121 -0.0061 

a,, - 0.0001 - 0.0002 - 0.0005 - 0.0013 - 0.0034 - 0.0057 - 0.0160 0.0037 
- 0.0055 

0.0018 

TABLE 1. Numerical results for the flux k ,  the propagation velocity W ,  and the Fourier 

coefficients a,+,, of the seriesf(t,cc) = a,(a) cosnt for the core boundary aA (for para- 

meter values a E (0,421) 

- 0.0003 - 0'0007 - 0.0017 - 0.0037 - 0.0086 - 0.0135 - 0.0212 0.0039 

0*0001 0.0003 0.0008 0.0017 0.0039 0.0060 0.0068 0.0021 

00 

n=O 
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FIGURE 3. The boundary &I, of a vortex ring specified by the parameter a, 
is found numerically, and shown for typical values of a E (0,2/2]. 

3. The numerical results 
First we give a brief description of the program. As was said before, the program 

modelled equations (2.19") applied to the problem posed by equations (2.13)- 
(2.15). No explicit simple formulae were available for calculating aP,/aX, so 
these derivatives were approximated by {P,(X,+A) - P,(X,)}/A (for a value of 
A = 0.008). Since most of the computing time was taken up in each evaluation 
of P,(X) (approximately I2 s for each evaluation), it was more efficient to replace 
( 2 . 1 9 ~ ~ )  by ( 2 . 1 9 ~ ) ;  that is, use (2.19*), where the same approximation to the 
matrix [aP,/aX,(t,)] is used, for several iterations in the sequence n = 2,3,  ... . 
Providing that the initial guess X1 was within approximately 0.01 of the actual 
root, this process worked very well. The repeated integral in (2.13) was evaluated 
by using the trapezium rule with a Romberg extrapolation. The logarithmic 
singularity at ( P ,  2) = (Y, z )  was integrated analytically over a sector of a small 
circle, and a corresponding small domain about the singularity at  ( r ,  x )  removed 
from the numerical integration. The integrand was evaluated by using the 
relation G(r,  P ,  z -2) = P{(r + P ) ' +  (Z -2)')9 {( 1 -+I?) K(E) - E(E)), 
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I 

FIGURE 4. The dividing streamline for various parameter values a E (0,421. The dividing 
streamline separates fluid with circulation from the external potential flow. 

where k2 = ~ T P / { ( ~ + P ) ~ +  ( ~ - 2 ) ~ )  is the modulus squared of the usual complete 
elliptic integrals K and E of the first and second kinds respectively. All calcula- 
tions were made in double precision to avoid rounding errors. 

This program was run on the IBM 360 computer a t  University College, 
London. Between 8 and 18 terms in the Fourier series (2.12) were used to 
approximate aA (thus 8 6 N < 18 in (Z.19'F)) for parameter values 0 < a < ,/2. 
The asymptotic results at a = 0.1 were used as an initial guess when a = 0.1, 
and then the results of this calculation used to predict a sufficiently accurate 
initial guess for the case a = 0.2, and so on. The results for ( I c ,  W ,  a,) are given 
in table 1 and figures 3 and 4. The value N = 18 was the largest used since the 
computational time was approximately 120 min for this case. 

The program was written to keep the computational errors in the table values 
less than 0.0001. However, for 1 < a < 4 2  the number of terms taken in the 
series (2.12) was insufficient to ensure this accuracy in the numerical scheme. 
A cautious estimate would be that the errors in the values of a, are of the order 
of the last coefficient given. However, tests made with different values of N 
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FIGUXE 5 .  The propagation velocity W ,  flux k,  core volume V,  and volume of entrained 
fluid V,  for parameter values a E (0,421. The asymptotic results of Norbury (1973) are shown 
for W and k as dotted lines. 

0 0.5 1 d2 
a 

FIGURE 6. The kinetic energy T, circulation K and fluid impulse P for parameter values 
ae(O,2/2] (p is the fluid density). The asymptotic results are shown as dotted curves: 
--- , Fraenkel; - - - -, Norbury. 

indicate that errors due to the approximation a, = 0 (n 2 IS)  affect the values 
of k ,  W ,  a,, a,, . . . , a,, very little. These values are probably still accurate to 
within 0.0001. 

The well-behaved numerical convergence suggests that the scheme does find 
the correct values for k,  W ,  a,, a,, . . . . We also have several independent checks 
on the accuracy of this numerical scheme. For a + 0 we have the asymptotic 
results of Fraenkel (1972, p. 132), in particular equations (6.16) and (6.19). The 
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a ... 0.2 0.4 0.6 0.8 1.0 1.2 J2 

A 0.1257 
B 0.1256 
K 3.1385 
P 10.1259 
T 9.85 
V,  5.1438 
V,  0.7888 
A ,  0.9811 

A,  0.0571 
A ,  0.0059 
A,  0.0004 

A ,  -0.3184 

A,, 0~0010 

0.5027 
0.5028 
3.1261 
10.6966 
6.58 
5.5864 
3.1426 
1.1574 

- 0.2880 
0.0340 
0.0002 

- 0.0015 
0.0004 

1.1310 
1.1311 
3.0882 
11.2808 
5.02 
5.0470 
6.9854 
1.3223 

0.0098 
0.0045 

- 0*0009 
- 0.0005 

- 0.2512 

2.0106 
2.0105 
3.0231 
11.7532 
3.99 
3.9022 
12.1565 
1.4926 

- 0.1922 
-0.0119 
0.0029 
0.0016 
0~0002 

3.1416 
3.1414 
2.9363 
12.1837 
3.29 
2.4368 
18.4495 
1.6650 

-0.1183 
- 0.0223 
- 0'0047 
- 0'0006 
0~0000 

4.5239 
4.5240 
2,8274 
12.6703 
2.82 
0.9558 
25.5814 
1.8345 

- 0.0434 
- 0.0138 
- 0.0061 
- 0.0025 
- 0*0006 

2n 

813 
64n/15 
256n/315 
0 
327113 
2.0 
0 
0 
0 
0 
0 

TABLE 2. Numerical results for B, the area of the core ( A  is the exact result for comparison), 
the circulation K,  the fluid impulse P,  the kinetic energy T, the volume V,  of irrotational fluid 
carried along with the core, the volume V,  of rotational fluid in the core, and the coefficients 

A,,  of the Fourier series p(0,a) = A2,(a)cos2n8 describing the dividing streamline 

t,k = 0 for parameter values a E (0,421. 

m 

n=O 

a ... 0.2 0.4 0-6 0.8 

a0 0.1999 0.3992 0.596 0.788 

a2 - 0.0068 - 0.038 - 0.096 -0.171 
a3 0.0005 0.0059 0.0206 0.046 

W 0.8508 0,6603 0.540 0.46 

TABLE 3. For comparison, values for some of the variables of table 1 
based upon the asymptotic formulae of Fraenkel(l972) 

a1 - 0.0005 - 0.0059 - 0.0206 - 0.046 

values in table 3 were calculated from these formulae, and can be directly com- 
pared with those of table I .  The good agreement a t  a = 0.2 of the numerical 
and asymptotic results makes it plausible that both are accurate representations 
of the actual values of the solution there, and that the numerical scheme is 
sound. Thus we see that these approximate formulae, which we know are valid 
approximations for a --f 0,  are useful approximations for quite large values of a. 
The numerical and asymptotic descriptions of the core boundary are shown in 
figure 7 for a = 0.8, at which value of a the asymptotic formulae are clearly 
becoming inaccurate, particularly near r = 0. 

For a --f 4 2  we have corresponding asymptotic results. These are (for (p, 0) 
the usual spherical co-ordinates, and with Cr. = 4 2  -a) 

We use the order notation of Hardy: f <  g if f ( e )  = O{g(E)} as E .+ 0, f i g  if f =o{g}  
as E + 0. 
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1 

0 

- I  

FIGURE 7. The core boundary aA for the parameter value u = 0.8. The dotted curve is the 
approximate curve found by Fraenkel(1972), which is clearly inaccurate near the axis T = 0. 
For u = 0-6 the approximate curve of Fraenkel(l972) is less than 0.01 from the numerical 
curve, except near t = &r, where the error is about 0.03. For cc < 0.5 the differences are less 
than 0.01. 

,, Inner 

0 

?A 

__t 
I' 

FIGURE 8. The core boundary aA for the parameter value a = 0.9. The asymptotic results 
of Norbury (1973) are also shown for a parameter value E = El2 J2 and a length scale of 
a + 2( 1 - e ) ,  the appropriate values for the vortex ring shown, where the vorticity constant 
n = a-2. 
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FIGURE 9. Th e  core boundary 8A for a = 1.1. For comparison the asymptotic results of 
Norbury(1973) areused(s = O . l l , a  + 1.78) togivethe‘outer’and‘inner’approximations. 

(where a = 2{1- El2 4 2  + . . .})’ and 

p = a2-9{1 k [1 - E 2 / 2  sin2 8]4}4 + . . .} for sin 8 2 a142 and p - a > E*, 

W = L (  az/az) =&{l+(Z/JZ)+...}’ k = E 2 / 1 0 +  .... 

Because of the singular nature of this limiting process a + J2 ,when the vortex 
core, which is topologically equivalent to a (doubly connected) torus, tends to 
a (simply connected) sphere, we might feel that these asymptotic fomulae would 
be applicable only in a very small region J2 2 a a2. However, the agreement 
with the numerical results at a = 0.9, which is shown in figure 8, is still quite 
good. The agreement between the numerical and asymptotic results when 
a = 1.1 is shown in figure 9, while the numerical results for a = 1.3 were in- 
distinguishable from the corresponding asymptotic results within the accuracy 
of the computation. For a = 1.35, the largest value of a for which the program 
was run, the numerical solution coincides with the interior streamline of Hill’s 
vortex, with a + 1.954, to the accuracy of figure 3. 

Another independent check is the set of results for a = $2, which are obtained 
from the known Hill’s vortex. The values in table 1 for a = 4 2  are accurate to 
within 0.0001, and the convergence of the numerical results across table 1, for 
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each ai as a --f J2, lends more weight to the suggestion that the numerical (and 
asymptotic) results accurately approximate the correct values. 

Various properties of the vortex ring, including the circulation, fluid impulse, 
kinetic energy, etc., can be calculated from the values in table 1 and the values 
of these properties are given in table 2. Also included in table 2 is a description 
of the dividing stream surface (actually the equation 

m 

p = A2,cos2nB 
n=O 

of the dividing streamline, which is the intersection of this stream surface with 
a meridional plane) and the values of the volume of fluid inside the dividing 
stream surface and exterior to the vortex core; that is, the irrotational fluid with 
circulation that is carried along with the vortex core through the exterior potential 
flow. The results are shown in figures 3-6. 

Comparisons with the asymptotic results (shown as dashed lines) were made 
using the formulae (6.151, (6.17) and (6.18) of Fraenkel (1972) for a: + 0 and 
the following formulae for Z = 4 2  - a --f 0: 

circulation = K = +a3{1+EJ2-&E21n(8,/2/E)+cE2+...} (c + 1-69), 

fluid impulse =P=-{1+EJ2++$%2+...}, 2ma5 
fluid density 15 

2na7 
fluid density 315 

{ 1 + 22 / (2 )E  + 3gz2+ . . .}, kinetic energy - =T=- 

where a = 2{1-a/22/(2)+0(~21nE)}. 

It is our inability to obtain the terms E2 In E and E2 in the expansion of a which 
prevents us from obtaining, in this notation, the complete expansions up to 
O(a2)  for comparison with the numerical results. If we estimate a, using the 
numerical results for W and the relation W = 2a2/15a2, then the asymptotic 
and numerical results for K ,  P and T differ by less than 1 % for a 2 0.9. 

We have two other checks on the numerical results: first a check on the 
integration routine used in table 2 .  Exact values of the area of cross-section A 
of the core are compared with numerical estimates B, given in table 2. We also 
applied the formula BTIBP = W with the circulation held constant to check both 
the asymptotic and numerical results. (This formula is produced in Norbury 
(1973).) 

Finally we give a resume of the dimensional variables so that the results of 
the graphs and tables may be readily converted to useful physical quantities. 
We have taken the vorticity constant Q, the ring radius L and the mean core 
radius aL as given. The propagation velocity is thus given by W = -CZLh2W, 
where w is the non-dimensionalized speed given in the tables and graph. The 
flux of fluid between the axis and the core boundary is k = QL4a2&, where 2 
is given in the results. The various lengths, areas, volumes have been non- 
dimensionalized by L, L2 and L3 respectively. We also have the circulation 
K = QL3a2i?, the fluid impulse P = pQL5a2P, and the total kinetic energy of 



A family of steady vortex rings 43 1 

the motion T = pQ2L7a4F, where p is the fluid density, and R, p ,  F are the 
quantities in the table and the graph. 
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